High performance controllers for grid-connected PWM voltage source converters

António Pina Martins
IEEE Member, University of Porto

Introduction

The design of high performance controllers for the grid connected VSC use the dq reference frame to model the system
- MIMO system with cross coupling

The usual approach is to design the two compensation controllers for the direct path and use a feed forward component to compensate for the coupling
- Parameters are unknown and/or can change over time

A controller that can directly handle with this coupling terms is the best approach to maintain the performance at high levels

System modelling

- Delayed converter actuation
- Cross coupling
- Complex domain modelling

Complex pole placement
- Observer

Results

Conclusions

Introduction

Design approaches include:
- Voltage and current sensorless methods
- Variable structure and sliding mode control
- Dead beat
- Direct power control
- Lyapunov-based control design
- Pole placement and
- Input-output linearization

System modelling in the complex domain and controller design based on pole placement is a powerful approach
Modelling the system with *L* filter (I)

Three phase grid-connected voltage source converter with a L filter

Conventional controller operating in dq synchronous coordinates with decoupling

- Parameter changing: *L*
- Delay between signal acquisition and PWM actuation

Modelling the system with *L* filter (II)

- Zero-order-hold discretization

\[
\begin{align*}
L \frac{di_d}{dt} &= -Ri_d + \omega Li_q + vr_d - vc_d \\
L \frac{di_q}{dt} &= -Ri_q - \omega Li_d + vr_q - vc_q
\end{align*}
\]

New vector *E* and state-vector *X*

\[
E = \begin{bmatrix} i_d[n] & i_q[n] & vc_d[n-1] & vc_q[n-1] & vr_d[n] & vr_q[n] \end{bmatrix}
\]

New state-space representation

\[
X[n+1] = A X[n] + B_1 Y[n] + B_2 Vr[n]
\]

\[
Y[n] = C X[n]
\]

Discrete time state-space representation of the VSC connected to the grid

Modelling the system with *LCL* filter (I)

- Parameter changing: *L*₁, *C* and *L*₂
- Resonant frequency
 - Variable with *L*₂
Modelling the system with LCL filter (II)

- Using the zero-order-hold discretization and considering the delay between signal acquisition and PWM actuation

\[
\begin{align*}
X_{dq}[n+1] &= A_{dq} X_{dq}[n] + B_{dq} u_{dq}[n] + D_{dq} v_{2dq}[n] \\
i_{2dq}[n] &= C_{dq} X_{dq}[n]
\end{align*}
\]

\[
X_{dq} = \begin{bmatrix} i_{2dq}[n] \\ v_{cdq}[n] \\ i_{1dq}[n] \\ v_{1dq}[n] \end{bmatrix}
\]

Discrete time-state representation of the VSC connected to the grid

Complex pole placement (I)

- Complex variables are used to model the system
 - Examples:
 \[
 c_{dq1} = c_{d1} + j c_{q1}; \quad c_{dq2} = c_{d2} + j c_{q2}
 \]

- Current behavior using complex notation
 \[
 i_{dq}[n+1] = c_{dq1} i_{dq}[n] + c_{dq2} v_{cdq}[n-1] + c_{dq3} v_{r dq}[n]
 \]

- The following state-space formulation is obtained
 \[
 \begin{align*}
 X_{dq}[n+1] &= A_{dq} X_{dq}[n] + B_{1dq} v_{cdq}[n] + B_{2dq} v_{r dq}[n] \\
i_{dq}[n] &= C_{dq} X_{dq}[n]
 \end{align*}
 \]

Complex pole placement (II)

- The complex state vector
 \[
 X_{dq}[n] = \begin{bmatrix} i_{dq}[n] \\ v_{c1dq}[n] \end{bmatrix}
 \]

- The system is represented by a SISO state-space model, with complex variables
- The controllability matrix has rank 2
 - The system is controllable

Complex pole placement (III)

- The controller design consists in the determination of the gains \(K_{i_{dq}} \) and \(K_{p_{dq}} \)
 - The closed-loop pole placement technique is used to determine the gains
Complex pole placement: LCL filter (I)

The controller design consists in the determination of the gains K_{idq} and K_{pdq} – Closed-loop pole placement

The observer estimates the capacitor voltage and the converter current

Controller schematics with observer-based state feedback

Simulation results: L filter (I)

- Parameters: $V_s=139/240$ V, 50 Hz, 200 kW, $R_s=0.01$ Ω, $L_s=1$ mH; $F_s=3.3$ kHz

DC capacitor charging [from 500 V to 750 V] under current control (the id current reference is the output of the DC voltage controller)

Reactive power inversion, showing the DC voltage [100 V/div], two AC currents, the id and iq references (id^* and iq^*) and their actual values

Simulation results: L filter (II)

Active power variation, showing the DC voltage [50 V/div], the AC currents, and the id and iq components

Fault ride-through capability under symmetric voltage sag: DC voltage [100 V/div], phase 1 voltage, and AC currents

Simulation results: L filter (III)

- In all the simulations
 - Fast current controller response
 - Small variation in the DC voltage

Fault ride-through capability under asymmetric voltage sag: DC voltage [100 V/div], two AC voltages, two and AC currents
Simulation results: **L filter (IV)**

- **Robustness**

 - Lower inductance deteriorates the response
 - The resistance value has no influence

 ![Graphs showing active power flow inversion with different grid inductances and equivalent resistances.]

Simulation results: **LCL filter (I)**

- **Parameters:** $V_s=230/400$ V, 50 Hz, 100 kVA, $L_1=0.4$ mH, $L_2=0.4$ mH; $C=250 \mu$F, $F_s=3$ kHz

 - Active power inversion: i_d and i_q references (i_d^* and i_q^*) and actual values;
 - grid currents (i_1r, i_1s, and i_1t), grid phase V_2 voltage (v_2t) and converter phase I_1 current.

 ![Graphs showing active and reactive power inversions with different grid inductances and equivalent resistances.]

Simulation results: **LCL filter (II)**

- **LCL filtering**
 - Better grid interface

 ![Graphs showing converter output current spectrum, i_1r, and grid current spectrum, i_2r, in nominal conditions.]

- **Robustness**
 - Unknown grid inductance

 ![Graphs showing response to an active power flow inversion with different grid inductances.]

Simulation results: **LCL filter (III)**

- **Ride-through capability**
 - Demanding grid codes

 ![Graphs showing fault ride-through capability under symmetric voltage sag: grid voltage and current, grid currents and phase I_1 converter current.]

High performance controllers for grid connected PWM voltage source converters
Experimental results: L filter

- Control platform based on a TMS320C6713 DSP
 - Daughterboard with a Xilinx Virtex FPGA and A/D converters

Conclusions (I)

- Accurate process and controller modelling is essential to obtain high levels of performance
- An integrated approach to design current controllers for grid-connected VSCs is important
 - L and LCL filter connections
- Complex domain modelling and pole placement based design allows the complete processing of the d and q variables and its coupling components
 - No need of the feed forward compensation terms
 - Easy inclusion of additional dynamics

Conclusions (II)

- The (complex domain) observer allows the use of less sensors
- Results show that the approach to the controller design is a very effective one
 - Power flow control
 - Current tracking and regulation
 - Parameter variation

Thank you for your attention.